CHAPTER

1

COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex number
system. We assume various corresponding properties of real numbers to be known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and ¥
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the req] axis, 1t is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form 0, y)
correspond to points on the y axis and are called pure imaginary numbers. The y axis
s, then, referred to as the imaginary axis.
It is customary to denote a complex number (x, y) by z, so that

) 2=, ).

The real numbers x and y are, moreover, known as the real and imaginary parts of z,
respectively; and we write :

(2) Rez=x, Imz=y.

Two complex numbers z, = (x1, y1) and z = (x;, y,) are equal whenever they have
the same real parts and the same imaginary parts. Thus the statément 2] =z means
that z; and z, correspond to the same point in the complex, or z, plane.
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The sum z; + 2, and the product z;z3 of two complex numbers z;, = (x,, yy) and
25 = (x4, ) are defined as follows:

(3) (X1, ¥1) + (x2, ¥2) = (¥ + %2, Y1 + ¥2)s
4 (x> Y1)(X2, ¥2) = (X1X2 — ¥1¥2, Y1¥2 + X1)2)

Note that the operations defined by equations (3) and (4) become the usual operations
of addition and multiplication when restricted to the real numbers:

(xh 0) + (va 0) = (xl + xz’ 0);
(x1, 0)(x2, 0) = (xyx3, 0.

The complex number system is, therefore, a natural extension of the real number
system. _

Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and it is easy
to see that (0, )(y, ) = (0, ¥). Hence :

z=(x,0+ (0, I)(y,0);

and, if we think of a real number as either x or (x, 0) and leti denote the pure imaginary
number (0, 1) (see Fig. 1), itis clear that*

3 7=x+iy.
Also, with the convention 22 =7z, 723 = 27, etc., we find that

i2=1(0, D, 1) =(-1,0),

or
(6) it=—1.
y
oz={(x,y)
oi=(0,1)
Ol x=(x0) * FIGURE1
In view of expression (3), definitions (3) and (4) become
0! (x1 4 iy + Gz + iy} = (x4 x2) +i(y1 + y2)s
(8) (e iy + iy2) = (xixp — y1y2) +i(nixe +x1y2).

*In electrical engineering, the letter j is used instead of i.
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Observe that the right-hand sides of these équations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacing i by —1 when it occurs.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
some of them. Most of the others are verified in the exercises.

The commutative laws

(1) o tix=5+n DL =257
and the associative laws
(2) (zZ1+22) + 3=2z14+ (& + 23)- {z122)25 = Z21(2224)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers obey these laws. For example, if z; = (x}, y{)
and z; = (x,, ¥;), then

Qtn=Gtny+tp =t nty)=n+z

Verification of the rest of the above laws, as well as the distributive law
(3) 2(zy +27) = 22, + 229,
is similar, | |

According to the commutative law for multiplication, iy = yi. Hence one can
write z = x + yi instead of z = x + {y. Also, because of the associative laws, a sum
71 + 23 + 23 or a product z,2,z; is well defined without parentheses, as is the case with
real numbers.

The additive idéntity 0= (0, 0) and the multiplicative identity 1 = (1, 0) for real
numbers carry over to the entire complex number system. That is,

4 z24+0=z and z-1=z

for every complex number . Furthermore, 0 and 1 are the only complex numbers with
such properties (see Exercise 9).
There is associated with each complex number z = (x, y) an additive inverse

(5) —i= ("'x’ —y)v

satisfying the equation z 4+ (—z) = 0. Moreover, there is only one additive inverse
for any given z, since the equation (x, » + (u, v) = (0, 0) implies that u = —x and
v = ~y. Expression (5) can also be written —z = —x — iy without ambiguity since
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(Exercise 8) —(iy) = (—i)y = i(—y). Additive inverses are used to define subtraction:
(6 21— 22 =21+ (—272).

Saif z; = (xq, yp) and z; = (x5, ¥2), then

(7 21— 23 ={(x1— X3, y1 — y2} = (x; — %) + i{y1 — y2)-

For any nonzero complex number z = (x, y), there is a number z~! such that
zz~! = 1. This multiplicative inverse is less obvious than the additive one. To find it,
we seek real mambers 1 and v, expressed in terms of x and y, such that

(e, ), v)=(1,0).

According to equation (4), Sec. t, which defines the product of two complex numbers,
u and v must satisfy the pair

xu—yv=1 yu+xv=0
of linear simultaneous equations; and simple computation yields the unique solution

H=— V= s
I A

So the multiplicative inverse of z = (x, y) is

®) <= (x2 j_ y2’ xz;yyz) - @D

The inverse z ! is not defined when z = 0. In fact, z = 0 means that x2 + y2 = 0; and

this is not permitted in expression (8).

EXERCISES

v 1. Verify that -
(@ (V2 —i) - i(1— /2i) = ~2i; {b) (2, -3){(=2,1) = (-1, 8);

© G, DG, -1 (-51 i) -2 1)

10
v 2. Show that
(@Re(iz)=—TImz; (M Im(iz)=Rez.
V'3, Show that (1+z)? =1+ 2z + 22,
4. Verify that each of the two numbers z = 1 % i satisfies the equation z% — 2z +2 = 0.
v /5. Prove that multiplication is commutative, as stated in the second of equations (1), Sec. 2.
6. Verify

(a) the associative law for addition, stated in the first of equations (2), Sec. 2;
(b) the distributive law (3), Sec. 2.
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v’ 7. Use the associative law for addition and the distributive law 0 show that
' 2+ +z) =22+ 2 + zz3.

8. By writingi = (0, ) and y = (¥, 0), show that —(iy) = (=Dy =il-y).
Vv 9. (a) Write (x, ¥) + (1, v) = (x, yyand point out how it follows that the complex number
0= (0, 0) is unique as an additive identity.
(b) Likewise, write (x, ¥}, v) = (x, y) and show that the number 1= (1, 0) isa unique
multiplicative identity. ‘
v 10. Solve the equation z2 + z + 1= 0 for z = (x, ) by writing

(1, M), ) + (5, ) + (1, 0) = (0, 0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show
that y 5 0.

Ans. z = (—l, :I:ﬁ)
2 2

3. FURTHER PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described in
Sec. 2. Inasmuch as such Properties continue to be anticipated because they also apply
to real numbers, the reader can easily pass to Sec. 4 without serious disruption.

We begin with the observation that the existence of multiplicative inverses enables
us to show that if a product z,z, is zero, then so is at least one of the factors z, and
23. For suppose that z,z, = 0 and-zy # 0. The inverse zl_l exists; and, according to the
definition of multiplication, any complex number times zero is zero. Hence

=1-2)=(z]"z))z, = 7y Nzy2y) = 7y 0=0.

That is, if z,z, = 0, either z 1 =0 or z; = 0; or possibly both Z1 and z, equal zero.
Another way to state this result is that if two complex numbers z7; and 7 dre nonzero,
then 50 is their product z,z,. ‘

Division by a nonzero complex number is defined as follows:

1) ozl (@0
. F4)

Ifzy=(x), ) and z, = (xz, ¥2), equation (1) here and expression (8) in Sec. 2 tell us
that ‘

o G vp) *2 X2 Y _ [XF2 iy yixp—xy,
2 x5+ y2 X2+ y2 x5+ y: X2+ y2
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That is,

z XX -+ VX — X .
@) 12+ Yiy2 +1y1 2 1Y2 (zp #0).

22 x4+ x5 + v}

Although expression (2) is not easy to remember, it can be obtained by writing (see
Exercise 7)

2y Ot iy (o — iy)
27 (xp+iyp))(xy —iyg)

(3)

multiplying out the products in the nurerator and denominator on the right, and then
using the property

4t B2 o).

- - -1_ %
=(21+zz)z31=z1z3 "tzy! =1+
23 3 23

4)

The motivation for starting with equation (3j appears in Sec. 5.
There are some expected identities, involving quotients, that follow from the
relation ) :

1
(5) —=z' (#0),
22

which is equation (1) when z; = 1. Relation (5) enables us, for example, to write
equation (1) in the form
. Zl 1
(6) ‘ — = — (z; #0).
22 22

Also, by observing that (see Exercise 3)
@' ) =@ ez =1 (@ #0,2#0),
and hence that (z,2,) ™! = z]'lz; ! one can use relation (5) to show that

0 eawteg=(D)(1) wronzo

2122 21/ \22

Another useful identity, to be derived in the exercises, is

© zﬁz=(ﬂ)(2) (23 #0, 24 # 0).

2324 3 24
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EXAMPLE. Computations such as the following are now justified:

( 1 )( 1 )_ 1 __ L 5+i_  54i
2-3)\1+i/  @~3)U+i) 5-i 5+i G-0DG+D
_5+i_ﬂ5 L=i+ii

26 26 ' 26 26 26

Finally, we note that the binomial formula involving real numbers remains valid
with complex numbers. That is, if z, and z, are any two complex numbers,

(9 (Z1+2)" = Z (:) ZT_kzg n=1,2,..)

k=0

where

(?’I) .__.._n! (k=0; 1’2,,_.,?1)

k) Ko=)
and where it is agreed that 0! = 1. The proof, by mathematical induction, is left as an
. exercise, ‘
EXERCISES
v'1. Reduce each of these quantities to a real number:
14+2i 24 - 5
— + b 5 1—1i 4.
“iuts PaTaonesy @09

Ans. (@) ~2/5, (b)Y —1/2; (c)—4.
Vo 2. Show that

@(-Dz=—-z;  (B) L =7 c£0).
l/z

v v 3. Use the associative and commutative laws for multiplication to show that

(2122)(2324) = (2123)(2224).

V'v'd4, Prove that if z 12223 = 0, then at least one of the three factors is zero.
Suggestion: Write (z122)73 =0 and use a similar result (Sec. 3) involving two
factors. '

v 5, Derive expression (2), Sec. 3, for the quotient z,/z, by the method described just after
it. :

6. With the aid of relations (6) and (7) in Sec. 3, derive identity (8) there.
7. Use identity (8) in Sec. 3 to derive the cancellation law:
az _

== (Zz#O,Z%O).

222 [4]
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| /8. Use mathematical induction to verify the binomial formula (9) in Sec. 3. More precisely,
i note first that the formula is true when » = 1. Then, assuming that it is valid whenr =m
where m denotes any positive integer, show that it must hold whenn =m + 1.

: 4. MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed line
segment, or vector, from the origin to the point (x, y) that represents z (Sec. 1) in the
complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the
numbers z = x + iy and —2 + ¢ are displayed graphically as both points and radius

vectors,
¥
i 21
. 17 (x,.y)
; . \2 * {. Aﬁ x '\?
-2 0 *  FIGURE2

According to the definition of the sum of two complex numbers z; = x; + iy,
and 75 = x5 + iyy, the number z; + z, corresponds to the point (x) + x3, y1 + ¥2). It
also corresponds to a vector with those coordinates as its components. Hence z; +2;
may be obtained vectorially as shown in Fig. 3. The difference 7y — z3 = 21 + (—22)
corresponds to the sum of the vectors for z; and —z, (Fig. 4).

- *  FIGURE3

Although the product of two complex numbers z; and z; is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for z,
and z,. Evidently, then, this product is neither the scalar nor the vector product used
in ordinary vector analysis. .

The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The modulus,
or absolute value, of a complex number z = x + iy is defined as the nonnegative real
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FIGURE 4

number v/x2 4 y2 and is denoted by |z{; that is,

(1) 2] = /22 + y2.

Geometrically, the number Jz| is the distance between the point (x, y) and the origin,
or the length of the vector representing z. It reduces to the usual absolute value in the
real number system when y = 0, Note that, while the inequality 7, < 2o is meaningless
unless both z) and z, are real, the statement 21| < |z;| means that the point 2y is closer
to the origin than the point Zp is.

EXAMPLE 1. Since |— 3+ 2| = +/13 and |1 + 4i| = +/17, the point —3 + 2/ is
closer to the origin than 1+ 4 s,

The distance between two points fi=xyt+iyjand zp =x; 4 iy, is |z, — z,|. This
is clear from Fig. 4, since {Z) — z,] is the length of the vector representing z; — z,; and,
by translating the radius vector z 1 — 22, ON€ can interpret z; — z, as the directed line
segment from the point (x,, y;) to the point (x;, y;). Alternatively, it follows from the
expression

A== ~x)+i(y -y
and definition (1) that

|21 = 22| = V(x| — 2)7 + (¥, — y)2.

The complex numbers 7 corresponding to the points lying on the circle with center
zp and radius R thus satisfy the equation |z — Zp| = R, and conversely. We refer to this
set of points simply as the circle |7 — ol =R,

EXAMPLE 2. The equation |z — 1+ 3i| = 2 represents the circle whose center is
zp = (1, —3) and whose radius js & — 2.

It also follows from definition (1) that the real numbers |z, Rez=x,andIm z = ¥
are related by the equation

2) Iz)* = (Re 2)2 + (Im 2)2.
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Thus
(3) Rez<|Rez|<|z|] and Imz<|Imz| <|z|.

We tumn now to the triangle inequality, which provides an upper bound for the
modulus of the sum of two complex numbers z; and z,:

(4) |2y + 2ol < lzel + |22

This important inequality is geometrically evident in Fig. 3, since it is merely a
statement that the length of one side of a triangle is less than or equal to the sum
of the lengths of the other two sides. We can also'see from Fig. 3 that inequality 4
is actally an equahty when 0, z), and z, are collinear. Another, strictly algebraic,
derivation is given in Exercise 16, Sec. 5.

An immediate consequence of the triangle inequality is the fact that

(3) lzy + 2ol = llz1] = |z,
To derive inequality (5); we write
24l =1z1 + 22) + (=2 S |7y + 22l + | — 23],
which means that
{6) tz1+ 23] = lzy| — |za|.

This is inequality (5) when [z;] > |z,|. If |z,| < lZgl we need only interchange z, and
7, in inequality (6) to get

lz1 + 22| = —(z;] — |z2),

which is the desired result. Inequality (5) tells us, of course, that the length of one side

of a triangle is greater than or equal to the difference of the lengths of the other two
sides.

Because |— z5| = |z5/, one can replace z; by —2Z7 In inequalities {4) and (5) to
summarize these results in a particularly useful form:
(7) lz) £ 22 = |z1] + |22,
(8) 21 £ 25| = llzy] = |z2][-

- EXAMPLE 3. If a point z lies on the unit circle |z| = 1 about the origin, then

lz =2 <|z]+2=3 :

and

lz =2 = |lz| - 2| =1L
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The triangle inequality (4) can be generalized by means of mathematical induc-
tion to sums involving any finite number of terms:

(9) |'21+Zg+'--+Z,JS|'Z:|+|22|+---+Izn| (n=2,3...).

To give details of the induction proof here, we note that when n = 2, inequality (9) is
just inequality (4). Furthermore, if inequality (9) is assumed to be valid when 7 = m,
it must also hold when n = m + 1 since, by inequality (4),

ittt )+ 2,0 < lZ1+ 22+ + 2] + 2]
=zl +1zal + - -+ (2D + (2.

EXERCISES
v 1. Locate the numbets z, + z, and 21 — zp vectonially when
, 2
(a) 2y =21, =y B za=(-v31, z=30,

(C) le(_3’ 1)! 9= (1, 4); (d) Z1 =X +fy1, iy =Xy —"J’l-
v 2. Verify inequalities (3), Sec. 4, involving Re z, Im z, and |z].

v'v 3. Verify that +/2[z| > |Re z| + |Im z].
Suggestion: Reduce this inequality to (|x| — |y[)2 > 0.

¥4, Tneach cdse, sketch the set of points determined by the given condition:
(@) lz—1+i|=1 BYlz+1 <3 {c) |z — 4i| > 4.

V5. Using the fact that |z, — 23| is the distance between two points 7, and z;, give a geometric
argument that

(a). |z — 4i| + |z + 4i{ = 10 represents an ellipse whose foci are (0, +4);
(B} |z — 1| = [z + i| represents the line through the origin whose slope is —1,

5. COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number 7 = x +iyis
defined as the complex number x — iy and is denoted by 7; that is,

I Z=x—iy.

The number 7 is represented by the point (x, —y), which is the reflection in the real
axis of the point (x, y) representing z (Fig. 5). Note that

7=z and HENH]

for all z.
Ifz)=x+iyand z, = X3 + iy,, then

21t 2= (x4 x3) — iy + o) = (31— iy + (xp = iyn).
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Ll

(x,—y) FIGURE 5

So the conjugate of the sum is the sum of the conjugates:
(2) n+n=I+2

In like manner, it is easy to show that

(3) 2= =12] — I

C))] 122 =21 22,

and

(5) (ﬁ)=% (2 #0).
%) )

The sum z + z of a complex number z = x + iy and its conjugate Z = x — iy is
the real number 2., and the difference z — Z is the pure imaginary number 2iy. Hence

2+7 . z—12
6 Rez="—, Imz=- .
© 2 2i

An important identity relating the conjugate of a complex number z = x + iy to
its modulus is .

0 - 2z =lzl%,

where each side is equal to x2 + y2. It suggests the method for determining a quotient
21/, that begins with expression (3), Sec. 3. That method is, of course, based on
multiplying both the numerator and the denominator of z;/z; by Z;, so that the
denominator becomes the real number |z,|%.

EXAMPLE 1. As an illustration,

143 (—143)@Q+i) —5+5 _ —5+5i

= - = = —1+i.
11 | 2-ne+i)  2—ip 5 i

See also the example near the end of Sec. 3.
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Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that

(8 lz122f = lzyl)za]

and

© al_ll o Lo,
22|zl

Property (8) can be established by writing

21221 = (12) @7 = (2D @B = @I @) = Izl = (zlza)?

and recalling that a modulus is never negative. Property (9) can be verified in a sirnilar
way. ‘

EXAMPLE 2. Property (8) tells us that |z2| = |z|2 and || = [z|°. Hence if z is a
point inside the circle centered at the origin with radius 2, so that |z| < 2, it follows
from the generalized form (9) of the triangle inequality in Sec. 4 that

122 +32% — 27+ 1) < [z + 3]z + 2|z] + 1 < 25.

EXERCISES
1, Use properties of conjugates and moduli established in Sec. § to show that
@7+ 3 =z -3 () iz =iz,
@©@+DT=3—4i; (@) |QZ+5)WZ =Dl =322 +5.
2. Sketch the set of points determined by the condition
(@Rez—-i)=2, (b)}|2z —i| =4,
v 3. Verify properties (3) and (4) of conjugates in Sec. 5.

"’v’4' Use property (4) of conjugate_s_ in Sec. 5 to show that
@3 =2%n G PA=7%
Y~ 8. Verify property (9) of moduli in Sec. 5.
6. Use results in Sec. 5 to show that when 2z and z5 are nonzero,
z H Z
7323 7373 lz2]123]
v 7. Use established properties of moduli to show that when 23] 3= [z4],

|
2223

1+ 22
I3ty

< 23] + lzal '
Hzal = tzsll
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8. Show that

Re(2+Z+29) <4  when|z] <1.

9. Itis shown in Sec. 3 that if 7,2, = 0, then at least one of the numbers z; and z must be
zero. Give an alternative proof based on the corresponding result for real numbers and
using identity (8), Sec. 5.

10. By factoring z* — 4z% + 3into two quadratic factors and then using inequality (8), Sec. 4,
show that if z lies on the circle |z] = 2, then

1 ‘ 1
D —
42243173

11. Prove that
(a) zisrealif and only if 7=z;
(b) zis either real or pure imaginary if and only if 72 = z2.
Y12, Use mathematical induction to show that whenn =12,3, ...,

@u+ot-FL=70+G+-+%; OLn 5 =45 I
vy 13. Letay, ay, a9, ..., a, (n > 1) denote real numbers, and let z be any comple?{ number,

With the aid of the results in Exercise 12, show that

Gt aiz+ap?+- b az  =ag+ oI+ a4+ a3

v 14. Show that the equation |z — zg| = R of a circle, centered at zp with radius R, carn be
written

|21* — 2 Re(zzg) + Izol* = &2,

v~ 15. Using expressions (6), Sec. 5, for Re z and Im z, show that the hyperbola x% — y2 = |
can be written

2+ =2
16. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)
|21 + 22l < |z4] + |z2]-
(@) Show that
o+ 2l = (@ + )@ + 2D = 27 + (0T + 05) + 5.
(%) Pointoutwhy
2% + 215 = 2 Re(2173) < 2z,Iz5.
{c) Use the results in parts (a) and {b) to obtain the inequality
21+ 221% < (Izg] + 1222,

and note how the triangle inequality follows.
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6. EXPONENTIAL FORM

Let r and & be polar coordinates of the point (x, ) that corresponds to a nonzero
complex number z = x + iy. Since x =r cos & and ¥ =r sin 6, the number 7z can be
written in polar form as

(4] z=r(cosf 4 i sin B).

If z =0, the coordinate & is undefined; and so it is always understood that z # 0
whenever 6 is discussed.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z; that is, » = |z|. The real number 8 represents the angle,
measured in radians, that z makes with the positive real axis when z is interpreted as
a radius vector (Fig. 6). As in calculus, & has an infinite number of possible values,
including negative ones, that differ by integral multiples of 2. Those values can be
determined from the equation tan 6 = y /x, where the quadrant containing the point
corresponding to z must be specified. Each value of 8 is called an argument of z, and
the set of all such values is denoted by arg z. The principal value of arg z, denoted by
Arg z, is that unique value © such that —7 < ® = 7. Note that

(2) argz=Argz 4 2nmw (n=0,%£1,+2,..).

Also, when z is a negative real number, Arg z has value 7, not —.

Z=x+iy

8

A
[/ x

FIGURE ¢

EXAMPLE 1. The complex number —1 — ; » Which lies in the third quadrant, has
principal argument —3s /4. That is,

3
Arg(—1—i)=-Z,
rg( i) 2

It must be emphasized that, because of the restriction —7 < @ < of the principal
argument ©, it is not true that Arg(—1 — i) =57 /4.
According to equation (2),

arg(-—l—i):—%;E + 2nn (n=0,%£1,42, . .).
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Note that the term Arg z on the right-hand side of equation (2) can be replaced by any
particular value of arg z and that one can write, for instance, :

arg(—l—z’):%r+2mr (n=Q, &1, 42, .. ).
The symbol &', or exp(id), is deﬁnt;d by means of Euler’s Jormula as
3) €% =cosf +ising,

where 6 is to be measured in radians. It enables us to write the polar form (1) more
compactly in exponential form as

4) z=re',

The choice of the symbol ¢ will be fully motivated later og in Sec. 28. Its use in Sec.
7 will, however, suggest that it is a natural choice.

EXAMPLE 2. The number —] —; ip Example 1 has exponential form
(3) —1—-i=«/§exp ’:z(—-?;i)]

With the agreement that =% = ¢/-%), this can also be written —] — i =a/2e737/4
Expression (5) is, of course, only one of an infinite number of possibilities for the
exponential form of —1 — ;:

(6) —1—i=+2exp [a’(—%}+2nz)] (n=0,+1,42, .. ).

Note how expression (4) with r = 1 tells us that the numbers ¢ 1je on the circle
centered at the origin with radius unity, as shown in Fig. 7. Values of ei? are, then,
immediate from that figure, without reference to Euler’s formula. It is, for instance,

it

FIGURE 7




SEC. 7 PRODUCTS AND QUOTIENTS IN EXPONENTIAL Form 17

geometrically obvious that

e =1 im2_ —i, and e =1

Note, too, that the equation
) t=Re®  (0<6<2m)
is a parametric representation of the circle |z| = R, centered at the origin with radius
R. As the parameter 6 increases from 6 = 0 to § =2, the point z starts from the
positive real axis and traverses the circle once in the counterclockwise direction. More

generally, the circle |z — zg| = R, whose center is z; and whose radius is R, has the
parametric representation

(®) =279+ REY (0 <6 <27).

This can be seen vectorially (Fig. 8) by noting that a point z traversing the circle
|z — zgl = R once in the counterclockwise direction corresponds to the sum of the
fixed vector zy and a vector of length R whose angle of inclination # varies from 6 = 0
to @ =2m.

*  FIGURE 8§

7. PRODUCTS AND QUOTIENTS IN EXPONENTIAL FORM

Simple trigonometry tells us that /¢ has the familiar additive property of the exponen-
tial function in calculus:

e'%1e'% = (cos 81 + i sin 61)(cos 6, + i sin 6;)
= (cos 8 cos 6; — sin 6 sin 6,) + i (sin §) cos B, + cos &, sin 6,)

= cos(8) + 6;) + i sin(8; + ) = &' 1762,
Thus, if z; = r1e"% and z, = rye’%, the product 712 has exponential form

(L 212y = ryry€ e’ = pyr, e 010,
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Moreover,

6y ,—if, i(B—85) ,
@) honege " n e Y _nje-6

23 ry e~ g, el rp

Because 1= 1¢'%, it follows from expression (2) that the inverse of any nonzero
complex number z = re'? is '

3) P P
. Z

Expressions (1), (2), and (3j are, of course, easily remembered by applying the usual
algebraic rules for real numbers and &*,
Expression (1) yields an important identity involving arguments:

@ arg(z1z;) = arg z; + arg z;.

It is to be interpreted as saying that if values of two of these three (multiple-valued)
arguments are specified, then there is a value of the third such that the equation holds.

We start the verification of statement (4) by letting ¢, and 8, denote any values
of arg z; and arg z;, respectively. Expression (1) then tells us that 61 + 6, is a value of
arg(z12;). (See Fig. 9.) If, on the other hand, values of arg(z,7,) and arg z are specified,
those values correspond to particular choices of # and r, in the expressions

arg(zizp) = (6, + 6,) + 2nm (n=0,£1,£2,..)
and

argzy =06+ 2nym (n, =0, £1, £2, ...

Since

(61 +8;) + 2nw = (B + 2mym) + (6, + 2(n — n))w),

*  FIGURE9
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equation {4) is evidently satisfied when the value
argzy =& +2(n —nx

is chosen. Verification when values of arg(z;z,) and arg z, are specified follows by

symmetry.
Statement (4) is sometimes valid when arg is replaced everywhere by Arg (see
Exercise 7). But, as the following example illustrates, that is not always the case.

EXAMPLE 1. Whenz, =—landz, =i,

3
Arg(z,27) = Arg(—i) = —g but Argz,+Argz, =m + g = 7”

If, however, we take the values of arg z; and arg z, just used and select the value

3
Arg(zi29) + 27 = —Fz- 42 = ?”

of arg(z,2;), we find that equation (4) is satisfied.
Statemnent (4) tells us that
21\ _ =1y _ -1
arg(n) =arg(z)z; ) = arg z; + arg(z; ),

')

and we can see from expression (3) that

(5) arg(z; ') = —arg z,.

Hence

(6) a:g(ﬁ) =argz) —arg z;.
22

Statement (5) is, of course, to be interpreted as saying that the set of all values on the
left-hand side is the same as the set of all values on the right-hand side. Statement (6)
is, then, to be interpreted in the same way that statement (4) is.

EXAMPLE 2. In order to find the principal argument Arg z when

2
1+ 3

2

observe that

arg z = arg(—2) — arg(1 + +/3i).
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Since
Arg(—2) =7 and Arg(1+v/3i) = %

one value of arg z is 27 /3; and, because 2 /3 is between —m and &, we find that
Argz =2m/3.

Another important result that can be obtained formally by applying rules for real
numbers to z = re®® is

(7 "=r" (n=0,£1,+£2,..).

It is easily verified for positive values of n by mathematical induction. To be specific,
we first note that it becomes z = re’® when n = 1. Next, we assume that it is valid
when n = m, where m is any positive integer. In view of expression (1) for the product
of two nonzero complex numbers in exponential form, it is then valid forz = m + 1:

m+1 igd_m _im@ — rm+lei(m+l)9

" =22 =retrMe
Expression (7) is thus verified when » is a positive integer. It also holds when n =0,
with the convention that 2% = 1. If n = —1, —2, ..., on the other hand, we define z"
in terms of the multiplicative inverse of z by writing

=Y where m=-n= 1,2,....
Then, since expression (7) is valid for positive integral powers, it follows from the
exponential form (3) of z~! that

1 al™ 1\, ", -
= [_el (—6)] = (_) e:m(—ﬁ) — (_) ei(—n}(—&) — rnemf?
r ‘ r r

(n=-1,-2,..).
Expression (7) is now established for all integral powers.
Observe that if » = 1, expression (7) becomes
(8) (@€ =e" (m=0,+1,42,..).
When written in the form
)] (cos & + i sin )" = cos ng + i sin nd (n=0,%1,+2,..),

this is known as de Moivre's formula.
Expression (7) can be useful in finding powers of complex numbers even when
they are given in rectangular form and the resuit is desired in that form.
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EXAMPLE 3. In order to put (+/3 + i)’ in rectangular form, one need only write

, (Jj + 1)7 — (261'1':/6)7 =274m/6 (266i17)(2ei1r/6) = —‘64(‘\/§+ i).

EXERCISES
v 1. Find the principal argument Arg z when
LA — 3\
(@)z= =5 () z=(3-DP
Ans. (a) —3m/4; (B)ym.
v 2. Show that (a) || =1; (b)el® =7,

v 3. Use mathematical induction to show that

£0gits .. gl = [ eth)  (p =9 3 ),

'4. Using the fact that the modulus | — 1] is the distance between the points 9 and 1 (see
Sec. 4), give a geometric argument to find a value of 8 in the interval 0 < 8 < 2m that
satisfies the equation | — 1| =2.

Ans. .

v 5. Use de Moivre’s formula (Sec. 7) to derive the following trigonometric identities:
(a)cos 30 =cos’ @ —3cosfsin®@;  (b)sin 3¢ =3cos® B sin 6 — sin’ 8.

v 6. By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

(@) i(l-VINW3+D=2014+3i) B)5i/2+i)=1+2i;
(©) (=14 ) = =8(1+1); (@ (14 V31710 =271+ 3i).
v Y7, Show that if Re z; > 0 and Re z; > 0, then :

Arg(zyz) = Arg z; + Arg 2o,

whers Arg(z;z,) denotes the principal value of arg(z;25), etc.

8. Let z be a nonzero complex number and  a negative integer (z = —1, -2, .. ). Also,
write z =ref® andm = ~-n =1, 2, ... . Using the expressions

M =r"eé™ and 7= (1) 0,
s

verify that (z")~! = (z~1)™ and hence that the definition z" = (z=1y" in Sec. 7 could
have been written alternatively as z" = (™)L,

9

Prove that two nonzero complex numbers z; and z; have the same moduli if and only if
there are complex numbers ¢; and ¢, such that z; == ¢;¢p and z; = €107,
Suggestion; Note that

exp(i b _; 92) exp (i o ; 02) =exp(ify)
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and {see Exercise 2(b)]

exp(i ! Z 92) cxp(i%) = exp(ffy).

v 10, Establish the identity

1— Z"+1

1+z+4+22+- - +2"= - z#D

and then use it to derive Lagrange's trigonometric identity:

+si_n[£2_n__—_}-__!m 0 <8 <2m).

1
I14+cosf 4cos28 +---+cosnfl =~
Feosd Teosnl = St T inG/2)

Suggestion: As for the first identity, write $ = 14z + 22 + - - - + 2" and consider
the difference § — z§. To derive the second identity, write z = ¢? in the first one.

vV 11. (a) Use the binomial formula (Sec. 3) and de Moivre’s formula (Sec. 7) to write

n
cos nf +isinnf = Z (") cos™* ¢ (i sin 6)* (n=12,..).
par B

Then define the integer m by means of the equations

_n/2 if n is even,
=1 @m—1/2 ifnisodd

and use the above sum to obtain the expression [compare Exercise 5(a)]
z n
cosnf =3 ( )(-1)" cos" Fosin*e  (n=12,...).
k=0 2k

(&) Write x = cos # and suppose that { < & < 7, in which case —1 < x < 1. Point out
how it follows from the final result in part (a) that each of the functions
T.(x) =cos(n cos~ ! x) n=0,1,2,...)

is a polynomial of degree n in the variable x.*

8. ROOTS OF COMPLEX NUMBERS

Consider now a point z = re?, lying on a circle centered at the origin with radius r (Fig.
10). As @ is increased, z moves around the circle in the counterclockwise direction. In
particular, when 6 is increased by 2x, we arrive at the original point; and the same is

* These polynomials are called Chebyshev polynomials and are prominent in approximation theory.
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7= rel

FIGURE 10

true when @ is decreased by 2., It is, therefore, evident from Fig. 10 that two nonzero
complex numbers :

6

Zl:f'lei and Zz=r28192

are equal if and only if
ry=rq and 91=92+2k?l',

where k is some integer (k =0, £1, £2, .. J.

This observation, together with the expression " = r"¢' in Sec. 7 for integral
powers of complex numbers z = re'?, is useful in finding the nth roots of any nonzero
complex number zg = rye*®, where n has one of the values n = 2,3, ... . The method
starts with the fact that an nth root of z; is a nonzero number 7 = r¢'® such that z* = 20,
or

= roem“.

rnemﬂ

According to the statement in italics just above, then,
r"=ry and nf =6+ 2kn,

~ where & is any integer (k =0, £1, +2,...). Sor = 1/ry, where this radical denotes
the unique positive nth root of the positive real number ry, and

)
- n _n

@ (k=0,+£1,+2,..).

Consequently, the complex numbers
6
z=:/r—0exp[s(—°+”‘—”)] (k =0, £1,+2,..)
n n
are the nth roots of zy. We are able to see immediately from this exponential form of

the roots that they all lie on the circle |z| = {/ro about the origin and are equally spaced
every 2r/n radians, starting with argument 6;/n. Evidently, then, all of the distinct
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roots are obtained when k= 0, 1, 2, .. ., n — 1, and no further roots arise with other
values of k. We let ¢, (k=0,1,2, ..., n — 1) denote these distinct roots and write

k
(1) ckz;'/roexpl:i(@+2—n):| k=0,1,2,...,n=1.
n n

(See Fig. 11.)

Cinl

Cy, Y

Ojnﬁ | x

The number 2/rg is the length of each of the radius vectors representing the
roots. The first root ¢, has argument 8y/n; and the two roots when n = 2 lie at the
opposite ends of a diameter of the circle |z| = 2/7g, the second root being —cy. When
n > 3, the roots lie at the vertices of a regular polygon of 7 sides inscribed in that circle.

We shall let zé/ " denote the set of nth roots of zy. If, in particular, z; is a positive
real number rg, the symbol ré/ " denotes the entire set of roots; and the symbol Yfgin
expression (1) is reserved for the one positive root. When the value of 6 that is used in
expression (1) is the principal value of arg zy (— 7 < 8y < ), the number cy is referred
to as the principal root. Thus when z is a positive real number ry, its principal root is

FIGURE 11

Finally, a convenient way to remember expression (1) is to write zg in its most
general exponential form (compare Example 2 in Sec. 6)

(2) o=rpe®THT o0, 41,42, .. )

and to formally apply laws of fractional exponents involving real numbers, keeping in
mind that there are precisely n roots:

. 1 :
zé/n — [rO ¢ (90+2k1r)] n - exp[! (B tlki’l’)jl

b , 27

'=;=/r_0exp[i( )] k=0,1,2,...,n-1.
n

The examples in the next section serve to illustrate this method for finding roots of
complex numbers,

n
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9. EXAMPLES

Tn each of the examples here, we start with expression (2), Sec. 8, and proceed in the
manner deseribed at the end of that section.

EXAMPLE 1. In order to determine the nth roots of unity, we write
1= Yexpli(0 + 2km)] (k=0,%1,£2..)
and find that

(1) 1V7" = «’ﬁexp’:i(g + —Z—JEE)] =exp(i2k—ﬁ) k=0,1,2,...,n—1.
n n n

When n = 2, these roots are, of course, £1. When n > 3, the regular polygon at whose
vertices the roots lie is inscribed in the unit circle |z| = 1, with one vertex corresponding
to the principal root z = 1 (k = 0).

If we write

(2) w,, = eXp (i 2—”) ,
n

it follows from property (8), Sec. 7, of &' that

wﬁ:exp(zy‘—”) (k=0,1,2,...,n—1).
n

Hence the distinct nth roots of unity just found are simply
n—1

2
l,co,,,wn,...,a)n

See Fig. 12, where the cases n =3, 4, and 6 are illustrated. Note that o} = 1. Finally,

FIGURE 12
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it is worthwhile observing that if ¢ is any particular ath root of a nonzero complex
number z, the set of nth roots can be put in the form

¢, c,, cwi, R ca)ﬁh!.
This is because multiplication of any nonzero complex number by w, increases the
argument of that number by 27 /n, while leaving its modulus unchanged.

EXAMFLE2. Letus find all values of (—8i)!/3, or the three cube roots of —8i. One
need only write

—8i =8 exp[i (—g + 2k7r)j, k=0, 4£1,%2,..)
to see that the desired roots are

3) ck=2exp[i (~% + 2"7”)] (k=0,1,2).

They lie at the vertices of an equilateral triangle, inscribed in the circle |z| = 2, and
are equally spaced around that circle every 27 /3 radians, starting with the principal

root (Fig. 13)
cg =2exp[i(—%):l =2(cos % — i sin %) =431,

Without any further calculations, it is then evident that ¢y = 2i; and, since ¢, is
symmetric to cp with respect to the imaginary axis, we know that = —+3—i.
These roots can, of course, be written

2 _2?7.'
€y, Cows, Cowy  Where w3 = exp 1? .

{See the remarks at the end of Example 1.)

FIGURE 13
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EXAMPLE 3. The two values ¢; (k =0, 1) of (v/3+i)!/2, which are the square
roots of +/3 + i, are found by writing

Viti= Zexp[i(% +2kn)] (k=0,+1,42,..)

and (see Fig. 14)

@) ck=«/§exp[i(-112 +kn)] k=0, D).
¥y
o
C1=—C0 ﬁ x
FIGURE 14

Euler’s formula (Sec. 6) tells us that

cﬂzﬁexp(ilfz-) =42 (cos % + i sin %),

and the trigonometric identities

l+cosa ) o l—-cosa
5 (% =——""" gin? —)_—-—_
{5) cos (2) 5 in > 5

enable us to write

s 1 1 V3 2+43
" —=={1l4cos = }==[14+2Z] = ,
T 2(+°S ) 2( 2 4
a1 1 V3l 2-.3
SN —==|1l—-cos=|==|1—- 22} =
12 2 2 2 4
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Consequently,

co=/2 ‘/2_+4\/§+i\/2_4ﬁ :% (\/2+x/§+i\/2—«/§).

Since ¢; = ¢y, the two square roots of +/3 + i are, then,

:I:% (\/2+\/§+i\/2—«/§).

EXERCISES
1. Find the square roots of {a) 2i; _(b) 1 —_\@i and express them in rectangular coordinates.
: V3—i
Ans. (@) £(1+1);, B+ .
(@ £(1+i); &) G

y 2

4

In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of
certain squares, and point out which is the principal root:

(@) (-16)Y4  (b) (=8 — 8/3))1/4,
Ans. (@) £V2(1+ 1), £/2(1 = 1);  (B) £(v/3 = 1), £(1 + V/30),

- In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of

certain regular polygons, and identify the principal root:

@ (=D @) 8, |

1+ /3 L1= V3

According to Example 1 in Sec. 9, the three cube roots of a nonzero complex number z;
can be written ¢y, cows, cocog, where ¢ is the principal cube root of z; and

(.2:r) —1+ 43
w3 = exp t?- =—

Ans. (b £4/2, &

2

Show that if z5 = —4./2 + 4«/5:', then ¢y = V21 +i } and the other two cube roots are,
in rectangular form, the numbers '
WD WE-D o (B-D- (Bt D

72 Sl 72 |

Cotws

* 8. (a) Let a denote any fixed real number and show that the two square roots of @ + { are

44 exp (z’ %) .

where A =+/a? + l and & = Arg(a + i).

R e

SH ST
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(b) With the aid of the trigonometric identities (5) in Example 3 of Sec. 9, show that the
square roots obtained in part (@) can be written

:{:—L(\/A +a+4ivA—a),
V2

[Note that this becomes the final result in Example 3, Sec. 9, when @ = /3]

v" 6, Find the four roots of the equation z* + 4 = 0 and use them to factor z* +4into quadratic
factors with rea] coefficients.

Ans. (22 + 224 2)(z2 = 27 + 2).
£ 7. Show that if ¢ is any nth root of unity other than unity itself, then
I+c+c?+ . 4oty
Suggestion: Use the first identity in Exercise 10, Sec. 7.
v' 8. (a) Prove that the usual formula solves the quadratic equation
at +bz4c=0 (a #0)

when the coefficients «, b, and ¢ are complex numbers. Specifically, by completing
the square on the left-hand side, derive the quadratic formula

_ =b+ (b? — 4ac)l?
- 2a

Z

2

where both square roots are to be considered when 52 — 4qc #0,
(&) Use the result in part () to find the roots of the equation z2 4 2z + (1 — )=0.

1Y, i 1y i ’
Ans. (b) (—1+ -—) + —, (—1 - —) -
v2/ V2 V2 W2
9. Letz = re'? be any nonzero complex nummber and 11 a negative integer (n = —1, -2,...).
Then define z'/" by means of the equation z'/" = (;=)1/™ where m — —n. By showing
that the m values of (z"/")~! and (z7)¥™ are the same, verify that 7" = (z1/my-1,
(Compare Exercise 8, Sec. 1)

10. REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the z plane,
and their closeness to one another. Our basic too] is the concept of an ¢ neighborhood

(N |z —zgl <&

of a given point zo. It consists of all points z lying inside but not on a circle centered at




30 CoMpLEX NUMBERS CHAP. I

¥
]Z"'zﬂl P
A
|Z\"‘"‘"5
\ 2 I
\\ l/
0 *  FIGURE 15

Zp and with a specified positive radius & (Fig. 15). When the value of ¢ is understood or
1s immaterial in the discussion, the set (1) is often referred to as just a neighborhood.
Occasionally, it is convenient to speak of a deleted neighborhood

(2} 0<lz—zg <¢,

consisting of all points z in an ¢ neighborhood of zq except for the point z itself.

A point z; is said to be an interior point of a set § whenever there is some
neighborhood of z; that contains only points of S; it is called an exterior point of
§ when there exists a neighborhood of it containing no points of 'S. If z; is neither of
these, it is a boundary point of S. A boundary point is, therefore, a point all of whose
neighborhoods contain points in S and points not in S. The totality of all boundary
points is called the boundary of S. The circle |z| = 1, for instance, is the boundary of
cach of the sets

(3) Iz} <1 and |z <1.

A set is open if it contains none of its boundary points. It is left as an exercise
to show that a set is open if and only if each of its points is an interior point. A set is
closed if it contains all of its boundary points; and the closure of a set S is the closed
set consisting of all points in § together with the boundary of §. Note that the first of
the sets (3} is open and that the second is its closure.

Some sets are, of course, neither open nor closed. For a set to be not open,
there must be a boundary point that is contained in the set; and if a set is not closed,
there exists a boundary point not contained in the set. Observe that the punctured disk
0 < |z| < 1is neither open nor closed. The set of all complex numbers is, on the other
hand, both open and closed since it has no boundary points.

An open set § is connected if each pair of points-z; and z, in it can be joined
by a polygonal line, consisting of a finite number of line segments joined end to end,
that lies entirely in §. The open set |z] < 1 is connected. The annulus 1 < lz|] <2 is,
of course, open and it is also connected (see Fig. 16). An open set that is connected
is called a domain. Note that any neighborhoed is a domain. A domain together with
some, none, or all of its boundary points is referred to as a region,
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FIGURE 16

A set § is bounded if every point of § lies inside some circle |z| = R; otherwise,
it is unbounded. Both of the sets (3) are bounded regions, and the half plane Re z > 0
is unbounded.

A point zg is said to be an accumulation point of a set § if each deleted neigh-
borhood of z; contains at least one point of S. It follows that if a set S is closed, then
it contains each of its accumulation points. For if an accumulation point z, were not
in §, it would be a boundary point of §; but this contradicts the fact that a closed set
contains all of its boundary points. It is left as an exercise to show that the converse
is, in fact, true. Thus, a set is closed if and only if it contains all of its accumulation
points.

Evidently, a point z; is not an accumulation point of a set § whenever there exists
some deleted neighborhood of z, that does not contain points of S. Note that the origin
is the only accumulation point of the set z, =i/n (n=1,2, ...).

EXERCISES

\f 1. Sketch the following sets and determine which are domains:
@lz-2+il <1 (&) 122 + 3] = 4,
(©Imz > (d)imz=1;

@0<argz=nm/4@#0): (f)lz—4] =]zl
Ans. (b), (¢) are domains.
V" 2. Which sets in Exercise 1 are neither open nor closed?
Ans. (e). .
v’ 3. Which sets in Exercise 1 are bounded?
Ans. {a).
v 4. In each case, sketch the closure of the set:
(@) —m <argz<nw (z7#0);  (b) [Rez| <izl;

(© Re(l) < 1; () Re(z®) = 0.
4 2




32 CompLEX NUMBERS CHAP. 1

V5, Let § be the open set consisting of all points z such that |z} < 1or |z — 2] < 1. State why
§ is not connected.

v 6 Show that a set § is open if and only if each point in S is an interior point.
‘ 7. Determine the accumulation points of each of the following sets:
P @z, =i"n=12,...; Bz, =i"/fn(n=1,2,..;
-1
@©0sagz<m/2@£0; @Az =(-D'UA+D—(n=12,..).
Ans. (@) None; (B)0; (d) £(1+i).
J‘/S. Prove that if a set contains each of its accumulation points, then it must be a closed set.

Y9, Show that any point zy of a domain is an accumulation point of that domain.
v 10, Prove that a finite set of points z;, z5, . . ., Z, canndt have any accumulation points.




